跳到主要內容

[凸分析] 支撐函數

以下我們給出凸分析中 常用的函數,稱作 支撐函數 (Support Function):

=====================
Definition: Support Function
令 $\mathcal{X}$ 為 $\mathbb{R}^n$ 中的任意緊緻集合 (compact set),我們稱函數 $h_{\mathcal{X}}: \mathbb{R}^n \to \mathbb{R} \bigcup \{+\infty\}$ 為 support function of $\cal X$ 若下列條件成立:對任意 $ {\bf y} \in \mathbb{R}^n$
\[
h_{\cal X}( {\bf y }) := \sup_{ {\bf x} \in \mathcal{X}} {\bf y}^T {\bf x}
\]=====================

Comments:
1. $\mathbb{R}^n$ 空間中,緊緻集合(compact set) 等價 有界封閉集 (closed and bounded set)


以下我們有一個極為重要的結果:任意集合的支撐函數 與 該集合的凸包 (convex hull) 之支撐函數相等。令 $\cal X$ 為任意集合,以下我們令 $conv( {\mathcal{X}})$ 為該集合 $\cal X$ 的凸包。對凸包定義不熟悉的讀者可先行閱讀: [凸分析] 凸集合 與 凸包 

======================
Claim:
令 $conv ({\mathcal {X}})$ 為緊緻集 $\cal X$ 的 convex hull 則
\[
h_{\cal X} ({\bf y}) = h_{conv({\mathcal{X} })} ({\bf y})
\]=====================

Proof: 
給定任意 $\bf y$$\in \mathbb{R}^n$,我們需證明 $ h_{\cal X} ({\bf y}) \le h_{conv({\mathcal{X} })} ({\bf y}) $ 與 $ h_{\cal X} ({\bf y}) \ge h_{conv({\mathcal{X} })} ({\bf y}) $

故現在我們首先證明 $ h_{\cal X} ({\bf y}) \le h_{ conv({\mathcal{X} })} ({\bf y})$ :注意到由於 $conv({\mathcal{X} }) \supset {\cal X}$ ,故
\[
\sup_{ {\bf x} \in \mathcal{X}} {\bf y}^T {\bf x} \le \sup_{ {\bf x} \in conv(\mathcal{X})} {\bf y}^T {\bf x} \;\;\;\;\;\; (*)
\]
接著我們證明 $h_{\cal X} ({\bf y}) \ge h_{ conv({\mathcal{X} })} ({\bf y}) $ :我們從不等式右方出發,首先觀察凸包中的任意點 $\bf x$ $\in conv(\mathcal{X})$ 均可被有限個 ${\bf x}^i \in \mathcal{X}$ 且 $i=1,2,...,m$  透過 convex combination 組合而得,亦即存在一組非負常數 $\lambda_{i} \ge 0$ 且 $\sum_{i=1 }^m \lambda_i =1 $,$i=1,2,...,m$ 使得
\[
{\bf x} = \sum_{i=1}^m \lambda_i {\bf x}^i
\]現在我們觀察內積 ${\bf y}^T {\bf x}$, 我們有
\[{{\bf{y}}^T}{\bf{x}} = {{\bf{y}}^T}\left( {\sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{x}}^i}} \right) = \sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^i}
\]且我們知道必定存在 ${\bf x}^{i^*} \in \mathcal{X}$  使得
\[\sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^i} \le \sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^{{i^*}}}\]由上述不等式可推得
\[\begin{array}{l}
\sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^i} \le \sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^{{i^*}}}\\
 \Rightarrow \sum\limits_{i = 1}^m {{\lambda _i}} {{\bf{y}}^T}{{\bf{x}}^i} \le {{\bf{y}}^T}{{\bf{x}}^{{i^*}}}\sum\limits_{i = 1}^m {{\lambda _i}}  = {{\bf{y}}^T}{{\bf{x}}^{{i^*}}} \le \mathop {\sup }\limits_{{\bf{x}} \in X} {{\bf{y}}^T}{\bf{x}} \;\;\;\; (**)
\end{array}\]故由 $(*)$ 與 $(**)$ 我們得到
\[
h_{\cal X} ({\bf y}) = h_{conv({\mathcal{X} })} ({\bf y})
\]

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質