跳到主要內容

[線性代數] 線性算子 與 特徵值/特徵向量(1) - 線性算子的矩陣代表 所表示的等價特徵問題

令 $V$ 為有限維度向量空間配備基底 $S=\{{\bf s}_1,{\bf s}_2,...,{\bf s}_n\}$ 且 $L: V \to V$ 為線性算子,則必存在唯一 的 一個 對應於基底 $S$ 的 $n \times n$ 矩陣代表 $A$  來 表示 $L$ (我們稱此矩陣代表 $A$ 為  representation of $L$ with respect to $S$) 使得 對任意 ${\bf x} \in V$ 我們有
\[
[L({\bf x})]_S = A [{\bf x}]_S \;\;\;\;\; (\star)
\]其中 $[{\bf x}]_S$ 表示 ${\bf x}$基於 基底 $S$ 的座標向量 (coordinate vector),亦即 若\[{[{\bf{x}}]_S} = \left[ \begin{array}{l}
{a_1}\\
{a_2}\\
 \vdots \\
{a_n}
\end{array} \right] \Leftrightarrow {\bf{x}} = {a_1}{{\bf{s}}_1} + {a_2}{{\bf{s}}_2} + ... + {a_n}{{\bf{s}}_n}\]

現在我們回憶原本 定義在 線性算子 $L$ 之上的特徵問題:亦即我們要 找出一組 特徵值 $\lambda$ 與其對應的 特徵向量 ${\bf x} \neq {\bf 0}$ 且 ${\bf x} \in V$ 滿足
\[
L({\bf x}) = \lambda {\bf x}\;\;\;\;\; (*)
\]
觀察 $(\star)$ 式,我們可得到透過 $A$ 矩陣所描述的等價特徵問題如下
\[\begin{array}{l}
{[L({\bf{x}})]_S} = A{[{\bf{x}}]_S}\;\\
 \Rightarrow {[\lambda {\bf{x}}]_S} = A{[{\bf{x}}]_S}\;\\
 \Rightarrow \lambda {[{\bf{x}}]_S} = A{[{\bf{x}}]_S}\;
\end{array}
\]則我們的目標變成要找 一組 $\lambda \in \mathbb{R}$ (or $\in \mathbb{C}$) 與 $[{\bf x}]_S \neq {\bf 0}$ 且 $[{\bf x}]_S \in \mathbb{R}^n$ (or $\mathbb{C}^n$)  滿足
\[
\lambda {[{\bf{x}}]_S} = A{[{\bf{x}}]_S}
\]

現在我們考慮以下例子:

Example 1
令 $L: P_1 \to P_1$ 為線性算子滿足
\[
L( at + b) := bt + a
\]另外給定一組 $P_1$ 的 有序基底 $S:=\{t, 1\}$,
(a) 試求透過 基底 $S$ 的矩陣 $A$ 來代表線性算子 $L$
(b) 定義對應於 $A$ 矩陣的等價特徵問題


Solution (a):
令 $A$ 為 線性算子 $L$ 為透過 基底 $S$ 的矩陣代表 ,則 $A$ 必須滿足 對任意 ${\bf x} \in P_1$,
\[
[L({\bf x})]_S = A [{\bf x}]_S
\]注意到我們的基底元素 ${\bf s}_1, {\bf s}_2 \in P_1$ 故我們現在若觀察
\[\left\{ \begin{array}{l}
L\left( {{{\bf{s}}_1}} \right) = L\left( t \right) = 1\\
L\left( {{{\bf{s}}_2}} \right) = L\left( 1 \right) = t
\end{array} \right.\]亦即
\[\left\{ \begin{array}{l}
{\left[ {L\left( {{{\bf{s}}_1}} \right)} \right]_S} = {\left[ 1 \right]_S} = \left[ \begin{array}{l}
0\\
1
\end{array} \right]\\
{\left[ {L\left( {{{\bf{s}}_2}} \right)} \right]_S} = {\left[ t \right]_S} = \left[ \begin{array}{l}
1\\
0
\end{array} \right]
\end{array} \right.\]故我們求得矩陣代表 (基於 $S$) 為
\[A = \left[ {\begin{array}{*{20}{c}}
{{{\left[ {L\left( {{{\bf{s}}_1}} \right)} \right]}_S}}&{{{\left[ {L\left( {{{\bf{s}}_2}} \right)} \right]}_S}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1\\
1&0
\end{array}} \right]\]
Solution (b)
等價的矩陣代表的特徵問題為要找 一組 $\lambda \in \mathbb{R}$ (or $\in \mathbb{C}$) 與 $[{\bf x}]_S \neq {\bf 0}$ 且 $[{\bf x}]_S \in \mathbb{R}^2$  滿足
\[
A{[{\bf{x}}]_S} = \lambda {[{\bf{x}}]_S}
\] 或者更簡而言之,我們要找 $\lambda \in \mathbb{R}^1$ (or $\mathbb{C}^1$) 與非零向量 ${\bf v} \in \mathbb{R}^2$ 滿足
\[
A {\bf v} = \lambda {\bf v}
\]

上述討論說明了 對線性算子的特徵問題(Eigenproblem) 可以透過 其矩陣代表 描述,事實上對任意方陣,我們皆可定義其特徵問題如下:
若 $A$ 為 $n \times n$ 方陣 ,定義 線性算子 $L: \mathbb{R}^n \to \mathbb{R}^n$ or ($\mathbb{C}^n \to \mathbb{C}^n$) 滿足 對任意 ${\bf x} \in \mathbb{R}^n$ (or $\mathbb{C}^n$)
\[
L({\bf x}) = A{\bf x}
\]現在,若存在 $\lambda \in \mathbb{R}$ (or $\mathbb{C}$) 且 ${\bf x} \neq {\bf 0}, {\bf x} \in \mathbb{R}^n$ or ($\mathbb{C}^n$) 使得
\[
A {\bf x} = \lambda {\bf x}
\]則我們說 $\lambda$ 為 $A$ 的特徵值 且 ${\bf x}$ 為其 對應於 $\lambda$ 的特徵向量,亦即 $\lambda$ 為 $L$ 的特徵值 且 ${\bf x}$ 為其 對應於 $\lambda$ 的特徵向量




留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質