跳到主要內容

[機率論] 非負連續隨機變數 的期望值

令 $Y $ 為 任意非負 連續隨機變數 配備機率密度 $f_Y$,則我們有以下非常簡潔的結果來描述 $Y$ 的期望值 $E[Y]$。

============
Lemma:
\[
E[Y] = \int_0^\infty P(Y>y) dy
\]============
Proof:
首先觀察等式右方,由於 $P\left( {Y > y} \right) = \int_y^\infty  {{f_Y}\left( x \right)dx} $ 故
\[\begin{array}{l}
\int_0^\infty  {P\left( {Y > y} \right)dy}  = \int_0^\infty  {\left( {\int_y^\infty  {{f_Y}\left( x \right)dx} } \right)dy} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {\left( {\int_0^\infty  {{f_Y}\left( x \right){1_{\left\{ {x \ge y} \right\}}}\left( x \right)dx} } \right)dy} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {\left( {\int_0^\infty  {{f_Y}\left( x \right){1_{\left\{ {y \le x} \right\}}}\left( y \right)dx} } \right)dy}
\end{array}\]由於 integrand 非負,由 Fubini Theorem 我們可互換積分順序並得到如下結果
\[\begin{array}{l}
\int_0^\infty  {P\left( {Y > y} \right)dy}  = \int_0^\infty  {\int_0^\infty  {{f_Y}\left( x \right){1_{\left\{ {y \le x} \right\}}}\left( y \right)dydx} } \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {{f_Y}\left( x \right)\left( {\int_0^\infty  {{1_{\left\{ {y \le x} \right\}}}\left( y \right)dy} } \right)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {{f_Y}\left( x \right)\left( {\int_0^x {1dy} } \right)} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {{f_Y}\left( x \right)x} dx\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}
\end{array} = \int_0^\infty  {x{f_Y}\left( x \right)} dx = E[Y] \;\;\;\;\;\;\; \square
\end{array}\]

Comments:
1. 前述假設 非負隨機變數是指 $Y \ge 0$ almost surely, 亦即 $ P(Y \ge 0) = 1$
2. 上述證明中採用的符號 $1_{A} (x)$ 表示 指示函數 (indicator function),我們給出定義如下:令 $X$ 為任意集合 則我們可定義對其上的任意子集 $A  \subset X$ 所對應的指示函數( indicator function of a subset $A$ of a set $X$ ) 為 $1_A: X \to \{0,1\}$ 滿足 \[{1_A}\left( x \right): = \left\{ \begin{array}{l}
1,\begin{array}{*{20}{c}}
{}&{x \in A}
\end{array}\\
0,\begin{array}{*{20}{c}}
{}&{x \notin A}
\end{array}
\end{array} \right.\]
3. 上述結果可用 distribution function 改寫,令 $F_Y(y) := P(Y \leq y)$則
\[
E[Y] = \int_0^\infty P(Y>y) dy = \int_0^\infty (1 - F_Y(y)) dy
\]這個結果可以使得我們在計算期望值的同時,不用再困擾需要先求出 pdf ,只要有分配函數 即可計算期望值。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質