跳到主要內容

[線性代數] 淺論座標

令 $V$ 為 $n$ 維向量空間,則我們知道 $V$ 有基底 (basis) $S$ 且其元素為 $n$ 維向量。現在我們定義 $S :=\{{\bf v}_1,...{\bf v}_n\}$ 為向量空間 $V$ 的一組有序基底 (ordered basis) 則任意向量 ${\bf v} \in V$ 可由上述有序基底唯一表示成以下的線性組合形式:
\[
{\bf v} = a_1 {\bf v}_1 + a_2 {\bf v}_2 + ... + a_n {\bf v}_n
\]其中 $a_1,...a_n \in \mathbb{R}^1$

Definition: Coordinate Vector
定義 ${\bf v}$ 對應於有序基底 $S$ 的座標向量 (coordinate vector) 為
\[{[{\bf{v}}]_S}: = \left[ \begin{array}{l}
{a_1}\\
{a_2}\\
 \vdots \\
{a_n}
\end{array} \right]\] 且其中 $[{\bf v}]_S$ 的元素 $a_i$ 稱之為 ${\bf v}$ 對應於有序基底的座標。

Example 1:
考慮向量空間 \[
V:= P_2 := \{p(t) = a_2t^2 + a_1t + a_0: a_2,a_1,a_0 \in \mathbb{R}^2\}
\]且令基底 $S= \{t^2, t, 1\}$ 現考慮 ${\bf v}:= p(t) = \alpha t^2 + \alpha t^1 + \alpha$ 求 $[{\bf v}]_S = ?$

Solution
注意到 ${\bf v}:= p(t) = \alpha t^2 + \alpha t^1 + \alpha$,暫稱此式為 $(*)$ 又因為 ${\bf v} \in V$ 故由 $\bf v$ 可由 $S$ 的有序基底 $\{ t^2, t,1\}$ 透過線性組合唯一表示:也就是說
\[{\bf{v}} = p\left( t \right) \in {P_2} \Leftrightarrow {\bf v} = {a_2}{t^2} + {a_1}t + {a_0} \;\;\;\;\; (\star)
\]
故比較 $(*)$ 與 $(\star)$ 兩式
\[{a_2}{t^2} + {a_1}t + {a_0} = \alpha {t^2} + \alpha t + \alpha
\] 可得 $a_2 = \alpha$, $a_1 = \alpha$ 與 $a_0 = \alpha$ 故
\[{[{\bf{v}}]_S}: = \left[ \begin{array}{l}
{a_2}\\
{a_1}\\
{a_0}
\end{array} \right] = \left[ \begin{array}{l}
\alpha \\
\alpha \\
\alpha
\end{array} \right]\]

Example 2:
考慮向量空間 \[
V:= P_2 := \{p(t) = a_2t^2 + a_1t + a_0: a_2,a_1,a_0 \in \mathbb{R}^2\}
\]且令基底 $S= \{t^2-t+1, t+1, 1^2+1\}$ 現考慮 ${\bf v}:= p(t) = 4 t^2 -2 t^1 + 3$ 求 $[{\bf v}]_S = ?$

Solution:
令 \[{\left[ {\bf{v}} \right]_S} = \left[ \begin{array}{l}
{a_1}\\
{a_2}\\
{a_3}
\end{array} \right]\]且 $\bf v$ 可透過基底 $S$ 做線性組合
\[\begin{array}{l}
{\bf{v}} = {a_1}{{\bf{v}}_1} + {a_2}{{\bf{v}}_2} + {a_3}{{\bf{v}}_3}\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = {a_1}\left( {{t^2} - t + 1} \right) + {a_2}\left( {t + 1} \right) + {a_3}\left( {{t^2} + 1} \right)\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \left( {{a_1} + {a_3}} \right){t^2} + \left( {{a_2} - {a_1}} \right)t + \left( {{a_1} + {a_2} + {a_3}} \right)\;\;\;\; (*)
\end{array}\]又因為
\[
{\bf v} = 4t^2 -2t +3 \;\;\;\; (\star)
\]故比較 $(\star)$ 與 $(*)$ 係數可得
\[\begin{gathered}
  4{t^2} - 2t + 3 = \left( {{a_1} + {a_3}} \right){t^2} + \left( {{a_2} - {a_1}} \right)t + \left( {{a_1} + {a_2} + {a_3}} \right) \hfill \\
   \Rightarrow \left\{ \begin{gathered}
  {a_1} + {a_3} = 4 \hfill \\
  {a_2} - {a_1} =  - 2 \hfill \\
  {a_1} + {a_2} + {a_3} = 3 \hfill \\
\end{gathered}  \right. \hfill \\
\end{gathered} \]
將上式改寫成矩陣求解 $a_1, a_2, a_3$如下
\[\begin{gathered}
   \left[ {\begin{array}{*{20}{c}}
  1&0&1 \\
  { - 1}&1&0 \\
  1&1&1
\end{array}} \right]\left[ \begin{gathered}
  {a_1} \hfill \\
  {a_2} \hfill \\
  {a_3} \hfill \\
\end{gathered}  \right] = \left[ \begin{gathered}
  4 \hfill \\
   - 2 \hfill \\
  3 \hfill \\
\end{gathered}  \right] \hfill \\
   \Rightarrow \left\{ \begin{gathered}
  {a_1} = 1 \hfill \\
  {a_2} =  - 1 \hfill \\
  {a_3} = 3 \hfill \\
\end{gathered}  \right. \hfill \\
\end{gathered} \]


留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質