跳到主要內容

[轉載] Can Control Science Bring New Insights to Stock Trading Research?

以下連結為 我的博士班指導老師 B. Ross Barmish 於 2013年 IEEE CDC 大會上的 Bode Lecture 錄影

http://www.ieeecss-oll.org/lecture/can-control-science-bring-new-insights-stock-trading-research-0

Date: 
2013

Location Information: 
2013 IEEE Conference on Decision and Control - Florence, Italy, December 2013

Author:  B. Ross Barmish

Author Bio: 
B. Ross Barmish received the Bachelor's degree in Electrical Engineering from McGill University in 1971. In 1972 and 1975 respectively, he received the M.S. and Ph.D. degrees, both in Electrical Engineering, from Cornell University. From 1975 to 1978, he served as Assistant Professor of Engineering and Applied Science at Yale University. From 1978 to 1984, he was as an Associate Professor of Electrical Engineering at the University of Rochester and in 1984, he joined the University of Wisconsin, Madison, where he is currently Professor of Electrical and Computer Engineering. From 2001 to 2003, he was with the Department of Electrical Engineering and Computer Science at Case Western Reserve University, where he served as Department Chair while holding the endowed Nord Professorship. Over the years, he has been involved in a number of IEEE Control Systems Society activities such as associate editorships, conference chairmanships, the Board of Governors and prize paper committees. He has also served as a consultant for a number of companies and is the author of the textbook New Tools for Robustness of Linear Systems, Macmillan, 1994. Professor Barmish is a Fellow of both the IEEE and IFAC for his contributions to the theory of robustness of dynamical systems. He received the Best Paper Award for Journal Publication in Automatica, covering a three-year period, on two consecutive occasions from the International Federation of Automatic Control. He has also given a number of plenary lectures at major conferences. While his earlier work concentrated on robustness of dynamical systems, his current research, the topic of this Bode lecture, concentrates on building a bridge between feedback control theory and trading in complex financial markets.

Abstract: 
My answer is "yes." In this lecture, I will make the case that there are some important open problems in finance which are ideally suited for researchers who are well versed in control theory. To this end, I will begin the presentation by quickly explaining what is meant by the notion of "technical analysis" in the stock market. Then I will address, from a control-theoretic point of view, a longstanding conundrum in finance: Why is it that so many asset managers, hedge funds and individual investors trade stock using technical analysis techniques despite the existence of a significant body of literature claiming that such methods are of questionable worth with little or no theoretical rationale? In fact, detractors describe such stock trading methods as "voodoo" and an "anathema to the academic world." To date, in the finance literature, the case for "efficacy" of such stock-trading strategies is based on statistics and empirical back-testing using historical data. With these issues providing the backdrop, my main objective in this lecture is to describe a new theoretical framework for stock trading - based on technical analysis and involving some simple ideas from robust and adaptive control. In contrast to the finance literature, where conclusions are drawn based on statistical evidence from the past, our control-theoretic point of view leads to robust certification theorems describing various aspects of performance. To illustrate how such a formal theory can be developed, I will describe results obtained to date on trend following, one of the most well-known technical analysis strategies in use. Finally, it should be noted that the main point of this talk is not to demonstrate that control-theoretic considerations lead to new "market beating" algorithms. It is to argue that strategies which have heretofore been analyzed via statistical processing of empirical data can actually be studied in a formal theoretical framework.

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質