2013年11月28日 星期四

[投資理論] 利率 與連續複利 問題

這次要介紹 投資理論中一個重要但又容易搞混的概念:利率 (Interest Rates)

首先是關於 無風險利率 (Risk-free interest rates)
一般而言被當作是無風險利率主要有兩種:
  1. Treasury rates
  2. LIBOR (London Interbank Offered Rate)
Treasury rates:
主要是由投資人購買Treasury securities, e.g., Treasury bond, Treasury notes 所採用的利率。

LIBOR:
中文稱作 倫敦銀行同業拆息 為英國銀行間的短期資金借貸款採用的利率。此利率每個營業日都可能不同。


有了以上的概念之後,我們來思考一件事,就是 Interest Rates 該如何計算?

==================
Example: (Compounding Frequencies matters)
考慮將現金量 $A_0$ 放置某銀行存款,且其年利率 $10 \%$,則一年之後 $A_1$會得到多少錢回來呢??

在回答這個問題之前,必定要先問 此利率的計息次數 (Compounding frequencies) 是怎麼定的。比如說是一年計算利息一次? 還是半年計息一次? 還是三個月計息一次。

以一年計息一次為例,則一年後可得回的金額為
\[ A_1 = A_0 (1 + 10 \%)^1 \]若以一年計息兩次 (亦即半年計息一次)為例,則一年後可得回的金額為
\[ A_1 = A_0 (1 + \frac{10 \%}{2})^2 \]若以一年計息四次 (亦即三個月計息一次) 為例,則一年後可得回的金額為
\[ A_1 = A_0 (1 + \frac{10 \%}{4})^4 \]

現在考慮如果 年利率 $r \%$ 為每年計息 $m$ 次,則一年後可得回的金額為
\[
A_1 = A_0 (1 + \frac{r}{m})^m
\]那麼現在如果 $t$ 年後呢?
\[
A_t = A_0 (1 + \frac{r}{m})^{mt}
\]

有了上述概念之後,我們來考慮如果年利率為 $r \%$,且每年計息 $\infty$ 次,則我們稱此利息為連續複利(continuous compounding interest rate, $r_c$ ),其與前述複利 $r$ 的定義有如下關係:
\[\begin{array}{l}
{A_t} = \mathop {\lim }\limits_{m \to \infty } {A_0}{(1 + \frac{r}{m})^{mt}} = {A_0}{e^{rt}}\\
 \Rightarrow {A_t} = {A_0}{e^{rt}}
\end{array}
\]也許你會說上述每年計息無窮次根本不會發生,但我們可利用 一年365天每天都計息來逼近也就是說我們取 $m = 365$,則得到的利率會接近上述連續複利的利率,我們將其定義如下:
連續複利的利率 $r_c$ 與 原本利率 $r$ 之間有如下關係:
\[
e^{r_c} := (1+ \frac{r}{m})^m
\]

Comments:
1. 一般而言,我們亦可由微分方程觀點來看連續複利問題:假設在 $t$ 年之後投資人帳戶為 $A(t)$ 則在 $\Delta t$ 年之間時,其帳戶可近似為 $A(t) r \Delta t $ 因此
\[
A(t + \Delta t) - A(t) \approx r A(t) \Delta t
\]現在對上式同除 $\Delta t$ 且令 $\Delta t \to 0$ 則我們可得以下微分方程
\[
A'(t) = r A(t)
\]若假設 $A_0$ 為初始帳戶,則對下列初始值問題
\[
A'(t) = r A(t), \;\;\; A(0) = A_0
\]的解為
\[
A(t) = A_0 e^{rt}, \;\; t\ge 0
\]
2. 注意到跟投資人如果跟銀行借款,那麼一樣要付出利息,計算方法同上。


以下我們提及一個有趣的 規則,稱作 Seven-Ten Rule :

Seven-Ten Rule :每年投資假設利率為 7% ,則大約十年之後資產可以翻倍。每年投資假設利率為 10 % 則大約七年之後資產可以翻倍。

[隨機過程] 隨機過程淺淺談(III) - Brownian motion (or Wiener Process)

這次要介紹的是 隨機過程中一個極為重要的過程,稱作
布朗運動(Brownian motion) or 維納過程(Wiener process)

介紹定義之前先看一下 布朗運動 長什麼樣子
上圖黑線部分即為布朗運動的實現 (Realization);或稱 sample path。
可以發現
  1. Brownian motion 的 sample path 非常不規則(very wiggly),(此不規則性質將導致對任意一處都無法微分)
  2. Brownian motion 隨著時間增大的時候,其散開程度 (之後會用 variance 描述) 越明顯

有了上述直覺之後我們看定義會比較清楚。

以下是 Brownian motion 的定義
===================
Definition: (Standard Brownian Motion or Wiener Process)
一個實數連續時間的隨機過程 $\{ B_t\}_{0 \leq t < \infty}$ 為一個標準布朗運動(Standard Brownian Motion),如果其滿足下列四個性質:

(1) $B_0 =0$ almost surely (亦即: 機率 $P(\{B_0 =0\}) =1$)

(2) 考慮時間區間 $(t_1,t_2], (t_2,t_3],...(t_n,t_{n+1}]$ 互為分離(disjoint)的區間,則其對應的增量增量彼此獨立;亦即對任意 $0=t_0 < t_1 < ... < t_n$,隨機變數
\[
\{ B_{t_1} - B_{t_0}, B_{t_2} - B_{t_1}, ..., B_{t_n} - B_{t_{n-1}} \text{are independent}\}
\](3) 布朗運動的增量服從高斯分佈;亦即$B_t - B_s \sim \mathcal{N}(0,t-s)$

(4) 對 almost every $\omega$ 而言,$t \mapsto B_t(\omega)$ 為連續;亦即
\[
P(\{ \omega \in \Omega: B_t(\omega) \text{ is a continuous function of $t$}\}) =1
\]
===========================

Comments:
1. 注意到性質 (4),布朗運動為"連續"函數,(但處處不可微分;此性質會在之後再作介紹。)
2. 若性質(3) 改為 布朗運動的增量服從高斯分佈;亦即
$$
B_t - B_s \sim \mathcal{N}(0,\sigma^2(t-s))
$$ 我們稱此為 Brownian motion (不再是 "standard" Brownian motion),也就是說 $\sigma =1$ 稱為 standard Brownian motion

3. 由於性質(3),布朗運動增量服從高斯分佈,故另外布朗運動還有一個等價定義,
4. 上述 Brownian motion 可透過 MATLAB 進行模擬,有興趣的讀者我們將 MATLAB 程式碼給出如下:



===================
Definition: (Standard Brownian Motion is a Gaussian Process)
一個實數連續時間的標準布朗運動隨機過程 $\{ B_t\}_{0 \leq t < \infty}$ 為一個
mean 為 $E[B_t]=0$ 且 covariance 為 $E[B_s B_t] = s \wedge t$ 的高斯過程(Gaussian Process)
且對 almost every $\omega$ 而言,$t \mapsto B_t(\omega)$ 為連續
===========================

Comment:
1. 對於布朗運動有兩種常見的修正變體,稱作 算術布朗運動 Arithmetic Brownian Motion (ABM) 與 幾何布朗運動 Geometric Brownian Motion (GBM)。有興趣的讀者可以參閱本部落格內相關文章。

現在我們首先看個 Brownian motion 的結果:



==================
FACT 1:
給定 $B_t$ 為 Brownian motion 則 $E[B_t] = 0$ 且 $E[B_t^2] = \sigma^2t$ 以及 $Var[B_t^2]=  E[B_t^2]  =\sigma^2 t$
==================
Proof: omitted (easy to show).


Comments: 除了透過定義求證上述 FACT 之外,我們還有其他方法值得一提:回憶 Brownian motion 滿足 $B_t - B_s \sim \mathcal{N}(0,\sigma^2(t-s))$,故我們可以利用 Moment Generating Function (mgf) 來求得對應的 一階動差 與 二階動差 ,回憶 mgf 定義 我們可寫下
\[{M_{{B_t} - {B_s}}}(q): = E[{e^{q\left( {{B_t} - {B_s}} \right)}}] = \exp \left( {\frac{{{q^2}{\sigma ^2}}}{2}{{\left( {t - s} \right)}}} \right)\]由此不難求得 FACT 1 所給出的待求的各項。




==================
FACT 2:
考慮 $W_t$ 為 Brownian motion,現若給定任意時間 $t_1, t_2$,則其對應的 covariance 為
\[
cov(W_{t_1} W_{t_2}) = \sigma^2 \min(t_1, t_2)
\]==================

Proof
首先注意到給定任意 $t>0$,$E[W_t - W_0] = 0$,亦即 $E[W_t] =0$。現在給定 $t_1, t_2$;在不失一般性情況下我們令 $t_2 > t_1$,由 covariance 的定義可知
\[\begin{array}{l}
 \Rightarrow cov({W_{{t_1}}}{W_{{t_2}}}) = E\left[ {\left( {{W_{{t_1}}} - E\left[ {{W_{{t_1}}}} \right]} \right)\left( {{W_{{t_2}}} - E\left[ {{W_{{t_2}}}} \right]} \right)} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{W_{{t_1}}}{W_{{t_2}}}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{W_{{t_1}}}\left( {\left( {{W_{{t_2}}} - {W_{{t_1}}}} \right) + {W_{{t_1}}}} \right)} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E\left[ {{W_{{t_1}}}\left( {{W_{{t_2}}} - {W_{{t_1}}}} \right)} \right] + E\left[ {{W_{{t_1}}}{W_{{t_1}}}} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \underbrace {E\left[ {{W_{{t_1}}}} \right]}_{ = 0}\underbrace {E\left[ {{W_{{t_2}}} - {W_{{t_1}}}} \right]}_{ = 0} + E\left[ {{W_{{t_1}}}^2} \right]
\end{array}\]最後一行等號成立由於 Brownian motion 的 independent increment,故現在我們有
\[cov({W_{{t_1}}}{W_{{t_2}}}) = E\left[ {{W_{{t_1}}}^2} \right] = E\left[ {{{\left( {{W_{{t_1}}} - {W_0}} \right)}^2}} \right] = {\sigma ^2}{t_1}
\]
注意到如果我們當初讓 $t_1 > t_2$,則有 $cov(W_{t_1}W_{t_2}) = \sigma^2 t_2$,故總結如下:
\[
cov(W_{t_1}W_{t_2}) = \sigma^2 \min(t_1,t_2). \ \ \ \ \ \square
\]





後記:布朗運動性質與相關研究 非常非常廣泛,有興趣讀者可以閱讀 Stochastic Process/Stochastic Calculus  或者 Advanced Probability 相關書籍或者論文。


2013年11月24日 星期日

[隨機過程] 隨機過程淺淺談(II) - 波松過程 Poisson process

這是要介紹的是 波松過程 (Poisson Process),他其實就是我們之前介紹的 計數過程(Counting process) 的一種 (詳見 隨機過程淺淺談(I) - 計數過程Counting process)

那麼我們先把定義給出

===========================
Definition: (Standard Poisson Process)
我們把一個計數過程 $\{ N_t, t \geq 0 \}$ 稱做 波松過程 如果下列三個條件滿足:
  1. $N_0=0$ (with probability 1),也就是說 $N_0$ 是一個常數 $0$ 隨機變數
  2. 對任意有限時間點 $0 \leq s < t < \infty $,其計數增量(increment) $N_t- N_s$ 是一個 波松 隨機變數 (Possion random variable) 伴隨 參數為 $\lambda (t-s)$;也就是說其 機率質量函數:\[ P(N_t-N_s=k) = \frac{[\lambda(t-s)]^k e^{- \lambda (t-s)}}{k!}, k=0,1,2...\]且計數增量的期望值 $\mathbb{E}[N_t-N_s]=\lambda(t-s)$ 其 變異數為 $var(N_t-N_s)=\lambda(t-s)$上式中的 $\lambda$ 代表 波松過程的 發生率(rate) 或者 強度(intensity)
  3. 如果考慮時間區間 $(t_1,t_2], (t_2,t_3],...(t_n,t_{n+1}]$ 為分離(disjoint)的區間,則其對應的增量
    $N_{t_2} - N_{t_1}$ , $N_{t_3}-N_{t_2}$,...$N_{t_{n+1}} - N_{t_n}$ 全為獨立(independent)。也就是說 波松過程 具備 獨立增量(independent increment),也就是在分離時間區間中的發生次數互為獨立
===========================

下圖顯示了 one sample path of Poisson process (jump time $S_1, S_2,...$)


===========================
FACT: Mean and Variance of Poisson Increment
令 $0 \le s < t$ 試證 $E[N_t - N_s] = \lambda (t-s)$
===========================

Proof:
注意到由於給定 $s,t$ 故 $N_t - N_s$ 可視為隨機變數,由期望值定義出發,\[\begin{array}{l}
E[{N_t} - {N_s}] = \sum\limits_{k = 0}^\infty  {kP\left( {{N_t} - {N_s} = k} \right)} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \sum\limits_{k = 0}^\infty  {k\frac{{{{[\lambda (t - s)]}^k}{e^{ - \lambda (t - s)}}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda (t - s){e^{ - \lambda (t - s)}}\underbrace {\sum\limits_{k = 1}^\infty  {\frac{{{\lambda ^{k - 1}}{{(t - s)}^{k - 1}}}}{{\left( {k - 1} \right)!}}} }_{ = {e^{\lambda (t - s)}}}\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda (t - s){e^{ - \lambda (t - s)}}{e^{\lambda (t - s)}} = \lambda (t - s)
\end{array}\]上式最後第 3 個等號利用下面的 FACT
\[{e^x} = \sum\limits_{k = 0}^\infty  {\frac{{{x^k}}}{{k!}}}  = \sum\limits_{k = 1}^\infty  {\frac{{{x^{k - 1}}}}{{\left( {k - 1} \right)!}}} \]


===========================
FACT: Second Moment of Poisson Increment
令 $0 \le s < t$,$E[(N_t - N_s)^2] = \lambda^2 (t-s)^2 + \lambda (t-s)$
且 $Var(N_t- N_s) = \lambda (t-s)$
===========================

Proof: omitted.


===========================
FACT: Martingale Property for Compensated Poisson Process
令 $N_t$ 為 Poisson process with intensity $\lambda$, 定義 compensated Poisson process $M_t := N_t - \lambda t$ 則 $M_t$ 為 Martingale
===========================

Proof (sketch):
在此只檢驗 Martingale 性質 (i.e., 要證 $E[{M_t}|{F_s}] = {M_s}$),其餘性質留給讀者檢驗:
注意到 $N_t - N_s$ 與 $F_s$ 獨立 且 $E[N_t - N_s] = \lambda (t-s)$,故觀察
\[\begin{array}{l}
E[{M_t}|{F_s}] = E[{N_t} - \lambda t|{F_s}]\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[{N_t}|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right) + \left( {{N_s} - {N_0}} \right)|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right)|{F_s}] + E[\left( {{N_s} - {N_0}} \right)|{F_s}] - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = E[\left( {{N_t} - {N_s}} \right)] + {N_s} - \lambda t\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}
\end{array} = \lambda \left( {t - s} \right) + {N_s} - \lambda t = {N_s} - \lambda s = {M_s}
\end{array}\]


Example 1
對任意 $t>0$,試計算 $E \left[C^{N_t}\right]$,其中 $C>0$ 為固定常數 且 $\{N_t\}$ 為 standard Poisson process

Proof:
固定 $t>0$ 注意到 $N_t$ 為隨機變數,不再是 隨機過程 ;故利用期望值定義,$$\begin{array}{l}
E[{C^{{N_t}}}] = \sum\limits_{k = 0}^\infty  {{C^k}P\left( {{N_t} = k} \right)}  = \sum\limits_{k = 0}^\infty  {{C^k}{e^{ - \lambda t}}\frac{{{{\left( {\lambda t} \right)}^k}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = {e^{ - \lambda t}}\sum\limits_{k = 0}^\infty  {\frac{{{{\left( {C\lambda t} \right)}^k}}}{{k!}}}  = {e^{ - \lambda t}}{e^{C\lambda t}} = {e^{\left( {C - 1} \right)\lambda t}}
\end{array}$$


Example 2
現考慮一個光感測器,其光電子(photoelectrons)服從波松過程,且每分鐘以速率 $\lambda$ 從光感測器射出。現在試問 在對任意 兩個連續分鐘間隔,有超過5個光電子被射出的機率是多少?

Sol
第一步先把文字轉為數學機率問題
令 $N_t$ 表在時間 $t$ 時,光電子被射出的個數 (此 $N_t$為 Random Variable)

現在考慮 兩個 連續分鐘時間間隔分別為 $t_0$ ~ $t_1$, $t_1$ ~ $t_2$,
則 在任意兩個連續分鐘時間間隔 有超過五個光電子被射出的機率可寫成
$P(\{N_{t_1}-N_{t_2} >5\} \cap \{N_{t_2 }- N_{t_1} >5\})$

接著,由於其服從波松過程,故可知 時間間隔為獨立 且 $N_t - N_s$ 為波松隨機變數,故上式改寫為
\[
P(\{N_{t_1}-N_{t_2} >5\})P(\{N_{t_2} - N_{t_1} >5\}) \]
其中 \[\begin{array}{l}
P(\{ {N_{{t_1}}} - {N_{{t_2}}} > 5\} ) = 1 - P(\{ {N_{{t_1}}} - {N_{{t_2}}} \le 5\} )\\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = 1 - \sum\limits_{i = 0}^5 {\frac{{{{[\lambda ({t_2} - {t_1})]}^k}{e^{ - \lambda ({t_2} - {t_1})}}}}{{k!}}} \\
\begin{array}{*{20}{c}}
{}&{}&{}&{}&{}&{}&{}&{}&{}
\end{array} = 1 - \sum\limits_{i = 0}^5 {\frac{{{{[\lambda  \times 1]}^k}{e^{ - \lambda  \times 1}}}}{{k!}}}
\end{array}\]最後一行等式成立是因為間隔一分鐘,所以 $N_t - N_s =1$ 最後將兩個機率寫出來,可知
$$P(\{N_{t_1}-N_{t_2} >5\} \cap \{N_{t_2} - N_{t_1 }>5\})=\left( 1-\sum_{i=0}^{5}\frac{[\lambda]^k e^{- \lambda}}{k!} \right)^2$$

====
[數學] 隨機過程淺淺談(0)-先備概念
[數學] 隨機過程淺淺談(I) - 計數過程Counting process
[數學] 隨機過程淺淺談(III) - 布朗運動 or 維納過程 (Brownian motion or Wiener Process)

2013年11月23日 星期六

[分享] 聖靈感動、方言與積極態度的討論

此文為個人回覆會友對於 "聖靈感動、方言與積極態度" 等等 的討論
以及個人一些看法
===================
Question:
認識一些人他們聚會說那聖靈充滿,然後一些人會有許多倒地失控的狀態,或者強調導告要說方言才算聖靈充滿,對這些我一直在腦中打問號,可是如果當我們說一些不完全支持的言論,感覺這些人就防衛了起來,然後認為是我們不懂⋯這是否合聖經教導呢?
---------------------
ANS:
我要強調一點,因為聖靈在我捫心中動工,也許當下自然而然有感動流淚,這當然很好。

但這絕對不代表 沒有感動流淚 就是聖靈沒動工,就是聖靈不同在。
更 不代表沒有說方言、沒有跟著倒下、沒有翻滾、沒有呼天喊地 就是聖靈不同在

--------------------------------
額外關於方言與聖靈的解說:

要知道聖經對這方面是非常保留的。使徒保羅曾說:要說方言可以,旁邊的人要能"解"方言,如果不能解,不過就是一堆奇怪的嗓音鬼扯+自high罷了..
.
林前12:10 又叫一人能行異能,又叫一人能作先知,又叫一人能辨別諸靈,又叫一人能說方言,又叫一人能翻方言。

林前12:28 神在教會所設立的:第一是使徒,第二是先知,第三是教師,其次是行異能的,再次是得恩賜醫病的,幫助人的,治理事的,說方言的。

林前12:30 豈都是得恩賜醫病的嗎?豈都是說方言的嗎豈都是翻方言的嗎

又說

林前14:13 所以那說方言的,就當求著能""出來。
.
林前14:19 但在教會中,寧可用悟性說五句教導人的話,強如說萬句方言。

----------------------------
以下關於積極不積極的討論
.
我反對成功神學 但我支持應該要有積極態度
差別在哪? 差別在於 成功神學認為你只要信了耶穌就能解決所有問題 直接轉職昇天(到底在信什麼都搞不清楚? ..)

但我所謂的積極態度是指,在面對各種挑戰/苦難/疾病/貧乏 也能繼續勇敢面對的態度!這是本分問題。我們本來就要努力過每一個日子。因為聖經很明白的寫了

提前4:10 我們勞苦努力,正是為此,因我們的指望在乎永生的神;他是萬人的救主,更是信徒的救主
.
太11:12 從施洗約翰的時候到如今,天國是努力進入的,努力的人就得著了。
.
願神幫助我們

[分享] 宣告、吸引力法則等等,是自我催眠或是真有功效?

此文為個人回覆會友對於 "宣告、吸引力法則等等禱告策略 的討論
以及個人一些看法

=====
Question : 
宣告、吸引力法則等等,到底是自我催眠或是真有功效⋯?
---------------------------------------
ANS:
以歸正神學的角度來看,必須要很嚴正的說 關於一切這類
【宣告、吸引力法則、方言、內在醫治、幻視成真、正面積極思想、聖靈充滿+淚流滿面地上翻滾、生病/遭禍全都怪到魔鬼撒旦身上、被牧者按手就撲倒在地,沒倒還會被說不屬靈、或者各種稀奇古怪用感情超過理性的敬拜方式】

上述泛屬成功神學的教導,都是非常 "不" 正確的 (這邊正確標準只有一個,就是以聖經作為標準) 。追求神的真道不該是讓 感情超過理性,不過現今教會還是 太多太多人在吹捧類似的教導。因為

1. 人們愛聽成功、積極、正面 的教導、最好就是那種專講 信耶穌就百病得醫治、錢財滾滾來、諸事大吉之類的廢話... (但聖經明明就寫人生在世會有苦難 怎麼不提呢?)

2. 人們愛聽上帝的 愛與憐憫,卻不喜歡聽上帝的罪與罰,最好就是專講 犯罪沒關係,反正神愛我 (但聖經明明除了寫 神的愛與憐憫 更有寫著 "神的公義" 怎麼不提呢?);以歸正神論或者聖經的觀點而言,要知道基督徒之所以為基督徒,是因為在萬世以前就受神蒙恩受揀選,但因為我們都是罪人,如果沒有神的憐憫。得到神的公義 不過就是剛好而已。

3. 世人不要神,只想要世界的成功 (想要控制神讓自己成功)



這是人之常情,但卻是我們亟需努力操練的部分,願主幫助我們;


後記:
雖然筆者自認懂的聖經/神學實在是少得可憐,但對於正面積極思想/成功神學 這塊的反對卻是極為肯定。想要親自認識神國的道理? 真的,先好好自己拿起手邊的聖經開始讀,好好思想。千萬不要因為某某牧師的名氣;或者所說的道理剛好很合你心,就開始盲目的跟從。神賜給我門智慧,是要我們自己去追尋真理,去真實的認識神,去明辨是非對錯。絕非單單盲從。

如果有心想要了解 "歸正神學" (簡單說就是 凡事回歸聖經、強調罪與悔改,用聖經當作標準來檢驗各事的神學);不過這種神學對於現今時代其實非常的不討喜,因為很容易讓聽的人不開心or不如聽成功神學開心。有興趣 也許有機會我們可以再多多討論

願神的道 光照我們
因為經上記著說:你們必曉得真理,真理必叫你們得以自由 (約翰福音8:32)

2013年11月22日 星期五

[隨機過程] 隨機過程淺淺談(I) - 計數過程Counting process

首先給出 計數過程( Counting Process )的定義如下

========================
Definition: Counting Process
我們說一個 計數過程 $\{N_t, t \geq 0\}$ 是一個從時間 $0$ 到現在時間 $t$ 計算某事物發生次數的 隨機過程
========================

注意定義中所指的事物可以想成表示為任何可以計數的事,其在 時間 從 $0$ 到 $t$ 發生的次數 我們把他叫做 $N_t$ (你也許會問,為何要叫 $N_t$ 其實很簡單就是英文 Number 的縮寫

舉例來說,我們可以把 $N_t$ 想成某網站從開站至今的點擊次數;或者汽車通過收費站的次數

好了,這個定義其實不是很直覺,我們來看張 計數過程 示意圖也許會清楚一點

上圖中橫軸是時間 $t$,縱軸是某事件發生到該時間的(累計)次數 $N_t$, 觀察上圖,我們可以發現一些現象
  1. 階梯狀的計數,表示次數逐漸增加(每計數一次就 $+1$)
  2. 時間 $T_i$是隨機的,也就是 計數過程 隨機的部分是在於我們不知道某事件到底會在什麼時候發生
  3. 計數過程 是右連續(簡單說就是 上圖對任易計數的右方逼近可以得到實黑點EX: 在時間 $T_2$ 計數為 $2$ 不是 $1$)

Comments
1. 現在假設 給定我們關心的計數時間為 $0 \leq t_1 \leq t_2 < \infty $ (也就是說我們不考慮無窮久的情況),然後我們想要知道在時間 $t_1$ 與 $t_2$ 之間,我們所關心的某事物(比如網站點擊率)發生的次數有多少。那麼我們該如何計算呢?

由前方定義我們知道 $N_{t_2}$ 表示的是在 時間從 $0$ 到 $t_2$ 發生的次數
同樣的, $N_{t_1}$ 表示的是在 時間從 $0$ 到 $t_1$ 發生的次數

所以如果我們把 $N_{t_2}$ 與 $N_{t_1}$ 相減,也就是 $N_{t_2} - N_{t_1}$,那我們得到的就是 在時間從 $t_1$ 到 $t_2$ 的發生次數 (看圖)

2. 我們把 $N_{t_2} - N_{t_1}$ 叫做 計數過程的 增量(increment)


[延伸閱讀]
[數學] 隨機過程淺淺談(0)-先備概念
[數學] 隨機過程淺淺談(II) - 波松過程Poisson process
[數學] 隨機過程淺淺談(III) - 布朗運動 or 維納過程 (Brownian motion or Wiener Process)

[Ref: J. A. Gubner, Probability and Random Processes for Electrical and Computer Engineers, Cambridge, 2006]

2013年11月20日 星期三

[整理] 金融名詞-證卷市場

以下為整理BKM- Essential of Investment 9th  的一些專有名詞

公司如何發行證卷?

  • 首次公開募股(Initial Public Offering, IPO)
  • 增發(再次發行)


1. 一級市場 (Primary markets)
用於發行新證卷的市場,通常由 投資銀行(investment banker) 進行證卷發行
-IPO 與 增發 皆在此市場完成

2. 二級市場 (Secondary markets)
投資人買進/賣出已發行之證卷所在的市場稱為二級市場 (investor trading issued securities, after IPO, for already-existing securities)
-corporation sell stock in primary stocks, while investors buy stock from other investors in the secondary market

3. 承銷商 (underwriter)
從發行公司處購買證卷並將證卷再次販售出去的公司

下圖顯示了在證卷發行過程中,發行公司、主要承銷商、與公眾之間的關係


4. 募股說明書(Prospectus)
對公司及其發行股票的描述,須由證卷交易委員會(SEC)批准

5. 私募(Private placement)
不公開的首次發行,公司股票直接被出售給一小部分的機構或者富有的投資者。

6. 首次公開募股IPO (the first time a company sells stock to public)
-SEO (seasoned equity offering, an issuance of stock has already undergone an IPO)

交易市場的種類

  • 直接交易市場(Direct search markets): ex: used car, used refrigerator, rare coins
  • 經紀人市場(Brokered markets):ex: real estate, primary market, block trading (the developing country use this market)
  • 交易商市場(Dealer markets)ex: bonds trade in OTC market, used car, rare coins
  • 競價拍賣市場(Auction markets)



7. 交易商市場(Dealer markets)
在該市場中交易商專注於某種特殊資產,並用自己的帳戶買賣該種資產
-交易商購買(bid)價格 與 出售(ask)價格的價差(Bid-Ask spread)是其利潤來源
-Ask price (you buy, dealer sale)
-Bid price (you sell, dealer buy)
-Bid-Ask spread: Ask-bid的價差
-Percentage spread:
\[
Percentage \ spread := \frac{Ask-Bid}{(Bid+Ask)/2}
\] -EX: 場外交易OTC


8. 競價拍賣市場 (Auction market): 
所有交易者聚集在一處進行資產買賣的市場
-鄭和最好的證卷交易市場
(ex: NYSE, OTC dealer market, 2nd market stock exchang)

交易指令的類型

  • 市場指令(Market orders)
  • 價格附帶執行指令(Price-contingent orders)
    • 限定價格購買(賣出)指令(limit buy (sell) order)
    • 止損指令(stop order)

9. 市場指令(Market order)
立即以當前的市場價格執行買入或者賣出的指令
-無執行的不確定性但有報價價格的不確定性。

9. 止損指令(Stop order)
在股價達到限定水平之後才會執行的指令


交易機制

  • 交易商市場網路(場外交易市場)
  • 電子通信網路
  • 專家經紀商市場網路

10.場外交易市場(Over the counter, OTC)
由經紀商與交易商組成的非正式網路,該市場的交易價格由此兩者協商。

11. 電子通信網路ECNs
允許直接交易而無須經由造市商的電子交易網路
-High-frequency trading

12. 專家經紀商 (Specialist)
為一家或以上的公司股票做市的交易商,並透過自買自賣維持公平而有效的市場

美國證卷市場

  • 那斯達克證券市場(Nasdaq Stock Market, NASDAQ) (www.nasdaq.com)
  • 紐約證券交易所 (New York Stock Exchange, NYSE) (www.nyse.com)
  • 美國證券交易所 (American Stock Exchange, AMEX) (www.amex.com)

13. 股票證卷交易所 (Stock exchanges)
為一種二級市場,其會員之間 在此交易已經發行的證卷。

14. 網路延遲(latency)
-low latency = low delay.

新的交易策略

  • 演算法交易策略(Algorithmic trading):
    透過電腦程式的幫助來達成快速交易決策
    • 高頻率交易策略(High-frequency trading): 演算法交易策略的一種,但依賴電腦做出非常快速的交易決策
  • 大宗匿名交易(Dark Pools)
    • 大宗交易(Blocks): 大量交易(一般而言超過一萬股的買賣)
    • 大宗匿名交易(Dark Pools): 
  • 債卷交易

保證金信用購買

15. 保證金信用購買 (Buy on Margin)
通過部分從經紀商借款的方式來購買證卷,保證金為投資人帳戶的淨值。
\[
Margin_{buy} := \frac{ \text{ Equity in account }}{ \text{Value of  stock} }
\]

賣空

16. 賣空(short sale)
投資人出售從經濟商借來的證卷 (投資人自己本身沒有證卷),之後在從市場上購買並還清借來的證卷 (非現金)
-此法用於預期股票即將下跌,故可以用一個較低的方式來購入原先以較高價格賣掉的股票並將其還給經紀商,從中取得利潤
-常與 stop buy 指令合併使用
\[
Margin_{short} := \frac{\text{Equity  in  account}}{\text{Value of  shares owed (debt)}}
\]

NOTE: 在金融市場中,shorting = selling = writing 三者等價。指賣出

2013年11月8日 星期五

[投資理論] 效率市場假設

效率市場假設(Efficient Market Hypothesis, EMH)

今天想跟大家分享一下投資理論(Investment Theory)中的 「效率市場假設」。

簡單的說,這是一個對於金融市場的"假設" (也就是還在爭執中,並非已經被證實的定理)。
那麼既然不過只是個假設為什麼要了解他呢? 因為效率市場的行為確實在某種程度上存在,特別是在已開發國家的金融市場中。以及競爭激烈的 Wall street。

以下我們先看個例子 [1]
下圖為2002年,J.A. Busse and T.C. Green, 發表的文章: Market Efficiency in Real Time, Journal of Financial Economics,指出了一個很有趣的發現,也就是他們觀察美國 CNBC TV 午間評論中,當日被評論提及的公司平均股價,對於消息發布的時間反應圖


橫軸(Minutes relative to mention)
為消息發布後的時間(0表示消息發布的當下,10表示消息發布的10分鐘後)。
縱軸(cumulative return (%))
為被評論提及的公司平均股價的收益
實線(Midday-Positive)
代表如果CNBC評價為正面時,出現在正面評價報導中的公司平均價格反應,
虛線(Midday-Negative)
代表CNBC評價為負面時,出現在正面評價報導中的公司平均價格反應。

可以看出在 15 分鐘左右消息就已經反應在股票價格上面 (正面評價的平均股價收益大約 5分鐘以內就已經進入穩態,負面消息的平均股價收益在12分鐘之後還持續下降? 也許壞消息傳的比較慢 :-) )

---
由上述的例子可以看出,效率市場假設 傳遞出一個概念
任何可得的 資訊/消息/情報,全部都應(立即)反映在金融商品的市場價格上

那麼甚麼是 "效率" 市場

所謂的效率 意指 市場反映出 "可得資訊" 的程度。然後效率市場假設任為金融商品的市場價格全部都由"可得訊息"反應出來。

依照資訊可得的程度分類,可以分成不同等級的效率市場假設
  1. 弱-效率市場假設 (Weak-form EMH): 假設所有可得的資訊 僅為過去金融市場交易的歷史資料。(便宜低廉,且所有人都非常容易獲得)
  2. 半強-效率市場假設 (SemiStrong-form EMH): 假設所有可得的資訊包括過去交易歷史資料以及各公司的財務資料、政府機構的各種向大眾公開的資料皆涵蓋其中。
  3. 強-效率市場假設 (Strong-form EMH): 是最強烈的假設,此假設涵蓋所有可能的資訊都反映在市場價格上(包含內線交易的資訊也涵蓋在其中)
那麼這有甚麼用呢??
首先,如果效率市場是正確的,也就是說效率市場確實存在
所有可得的資訊都會反應到金融商品的市場價格。那麼下列推論成立
  • 1. 金融商品價格呈現隨機漫步 (Random walk),因為所有資訊已經反應在價格上面,過去的資訊已經也反映出來,也就是說沒有人可以"預測" 未來的金融商品走勢
  • 2. 技術分析 (Technical Analysis) 失效 (因為金融商品價格服從隨機漫步,無法用任何圖形識別或者各樣技術分析來預測,也就是說看圖說故事的大師們都是錯的)
  • 3. 基本面分析 (Fundamental Analysis) 失效 (因為所有公開資訊已經反應在價格上,提升收益)
  • 4. 行為金融學 (Behavioral Finance) 失效 (因為效率市場中的投資人為理性)
  • 5. 被動投資策略 (Passive investment)為最佳投資組合(市場指數為最佳投資組合)
  • 6. 主動投資策略 (Active investment) 失效: (選擇特定股票方式/共同基金 永遠會敗給市場指數)

可以看得出來上面效率市場假設完全反對 
技術分析/基本面分析/主動投資/

那麼這是否是真的呢? 效率市場是否存在呢?
如果是? 那麼 股神 Warren Edward Buffett 靠著基本面分析成為億萬富翁,難道不是一個證據說明市場並非效率市場嗎?

事實上,市場具備某種程度的效率,但並非超級效率 (強效率市場假設失效)
目前學界多認為市場呈現的是 弱 or 半強式 效率市場假設


這類相關的問題其實非常有趣。也許有空我們在多聊聊。

Reference
[1]: Bodie, Kane, and Marcus, Essentials of Investments, 9th, Chapter 8


2013年11月1日 星期五

[隨機過程] 隨機過程入門-先備概念

此文主要介紹隨機過程的定義,基本上建議讀者需要先對機率論有一些基本了解。比如說如果有一點 隨機變數 (可測函數) 與 $\sigma$-algebra 的基本認識,那麼在之後接觸較為抽象的概念時會比較容易上手,有興趣的讀者請參閱此文:[測度論] Sigma Algebra 與 Measurable function 簡介


隨機過程 在概念上其實並不複雜(雖然數學上很複雜...),簡單說就是把很多的隨機變數蒐集起來並加上時間指標。嚴格來說:隨機過程 (Random process) or (Stochastic process) 是一個 隨機變數的集合(家族),一般通常可分為 離散時間 與 連續時間 的隨機過程來討論。


========================
Definition: 離散時間 隨機過程 (Discrete-time stochastic process)
一個離散時間隨機過程是隨機變數 $\{X_n\}$ 的集合,其中 $n$ 的範圍落在給定的整數集合中 ($n$ 想成是(離散的)時間指標)。
========================

Example
比如說下列都是離散時間隨機過程
$\{X_n, n=1,2,...\}$ 或者 $\{X_n, n=0,1,2,...\}$, 或者 $\{X_n, n=0, \pm 1, \pm2,...\}$


Comments:
1. 隨機變數 既不隨機也不是變數,他的本質是一個函數!!
2. 上述定義中,隨機變數 必須定義在機率空間 $(\Omega, \mathcal{F}, P)$
因為 隨機變數是一個定義在樣本空間 $\Omega$的函數,我們可以有兩種方法來看待 $X_n(\omega)$
  1. 將 $n$ 固定住,則 $X_n(\omega)$ 為 $\omega$ 的函數 且為一個隨機變數
  2. 將 $\omega$ 固定住,則 我們可以得到一系列的數 $X_1(\omega), X_2(\omega), ...$此系列稱作對一個隨機過程的 實現(realization),或者稱作 隨機過程的取樣路徑(sample path),或者 隨機過程的取樣函數(sample function)
先看張圖感受一下甚麼是隨機過程的實現:
上圖為五種不同的 離散隨機過程 (或稱 時間序列) 的sample path。
White: White Noise
RWD: Random Walk with Drift
DT: Deterministic Trend + White noise
IMA (1,1): Integrated moving Average
ARMA (1,1): Autoregressive moving Average

======================
Definition: 連續時間 隨機過程(Continuous-time stochastic process)
一個連續時間隨機過程是隨機變數 $\{X_t\}$ 的集合,其中 $t$ 的範圍落在給定的區間之中。($t$ 想成是(連續的)時間指標)
======================

Example
比如說下列都是連續時間的隨機過程

$\{X_t, t \geq 0\}$, 或者 $\{X_t, 0 \leq t \leq T\}$, 或者 $\{X_t, -\infty < t< \infty\}$


Comments:
1. 令 $\cal{T}$ 為 index set,隨機過程 $\{X_t, t \in T \}$ 視為一個雙變數函數;亦即
\[
\{X(t, \omega), t \in T, \omega \in \Omega \}
\]其中 $\Omega$ 稱為 sample space。

2. 一般而言,財務市場中的 股票價格波動 $S_t$ 通常被視為連續時間 隨機過程 (的實現 !)一般以 Geometric Brownian Motion (一種 隨機微分方程(Stochastic Differential Equation, SDE) 來描述股價。
\[
dS_t = S_t \mu dt + S_t \sigma dB_t
\]其中 $\mu$ 為股市飄移項, $\sigma$ 為波動項, $B_t$ 為標準布朗運動 (為一個極為重要的隨機過程)。不過在此我們不贅述太多細節。現在我們可以用例子來看看,下圖為 IBM 2008年1月 - 12月的 每日股價走勢 (一年共252個交易日,故橫軸為$ t=0, ..., 252$),可以感受一下


另外在此列舉幾類特殊隨機過程

  1. 平穩過程 (Stationary Stochastic Process)
  2. 鞅 (Martingale)
  3. 馬可夫鏈 (Markov Chain)

大部分可被分析的隨機過程皆落在上述三類之中,有興趣的讀者可以搜尋本 Blog 其他文章或者閱讀相關論文/書籍 做進一步了解。


隨機過程的描述

有了前面的粗淺概念與定義,現在我們想要更進一步描述隨機過程。首先回憶對於單一隨機變數 $X$ 而言,如果我們知道其 機率密度函數 (probability density function )或者 知道機率質量函數 (probability mass function, pmf),則我們可以得知 對任意集合 $B$  的機率 $P(X \in B)$ 或者 給定任意函數 $g$,其對應的期望值 $E[g(X)]$。亦即此 隨機變數 $X$ 的特性被完整描述。

現在若我們考慮一組 隨機變數 $(X,Y)$ 而言,假設已知其 joint pmf 或者 joint density 則我們亦可寫下對任意集合 $B$ 或者函數 $g$ 的機率 $P(X,Y \in B)$ 或者期望值 $E[g(X,Y)]$。上述結果推廣到 對有限多個隨機變數:亦即 一但我們 已知 joint pmf 或者 joint density 則有限多個隨機變數仍可以毫無困難的被完整描述。

但隨機過程而言,事實上是一組 無窮多個隨機變數,我們想知道是否上面的方法依然可行? 所幸 Kolmogorov 為我們證明了一個隨機過程 $X_t$ 仍可以被完整的描述,但由於條件牽涉較繁複的推導,這邊不贅述有興趣的讀者可參閱 J. A. Gubner, Probability and Random Processes for Electrical and Computer Engineers, Chapter 11.。

隨機過程的 mean 與 correlation function
回憶對單一隨機變數而言,我們可以計算 mean 與 variance,對於一組相關的隨機變數 $X,Y$而言,我們可計算個別的 mean, variance 以及相關性 $E[XY]$。現在我們將此想法拓展到 隨機過程中:
====================
Definition: mean function
若 $X_t$ 為一個隨機過程,則對任意固定時間 $t$,$X_t$ 為一個隨機變數且此時對應的 mean  $E[X_t]$ 定義如下
\[
m_X(t) := E[X_t]
\]我們稱上式為 隨機過程的 mean function。
====================


====================
Definition: (auto) correlation function
若 $X_t$一個隨機過程,且 $X_{t_1}$ 與 $X_{t_2}$ 為對應於此隨機過程在 $t_1$ 與 $t_2$ 的兩個隨機變數,則  $X_{t_1}$ 與 $X_{t_2}$ 的 correlation, $R_X(t_1, t_2)$ 定義為
\[
R_X(t_1,t_2) := E[X_{t_1}X_{t_2}]
\]我們稱上式為 隨機過程的 correlation function。
====================

Comments
1. mean function 描述了 隨機過程的平均狀態
2. correlation function 定義在 同一個 隨機過程 (不同時間的隨機變數),並非兩個不同隨機過程故我們又稱此 correlation function 為 autocorrelation function。
3. correlation function 描述了 隨機過程的行為平滑還是多曲折如下圖:


上圖中 $\tau := t_1 - t_2$

現在我們看個例子:

Example
考慮一隨機過程 $X_t := \cos( 2 \pi f t + \Theta)$,其中 $\Theta \sim \text{uniform}[-\pi, \pi]$試求 mean function 與 correlation function。

Solution
由 mean function 定義
\[\begin{array}{l}
{m_X}(t): = E[{X_t}] = E[\cos (2\pi ft + \Theta )]\\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \int_{ - \infty }^\infty  {\cos (2\pi ft + \theta ){f_\Theta }\left( \theta  \right)d\theta } \\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \int_{ - \infty }^\infty  {\cos (2\pi ft + \theta )\frac{1}{{\pi  - \left( { - \pi } \right)}}d\theta } \\
\begin{array}{*{20}{c}}
{}&{}
\end{array} = \frac{1}{{2\pi }}\int_{ - \infty }^\infty  {\cos (2\pi ft + \theta )d\theta }
\end{array}\]上式為對 $\cos$ 函數積分,故 mean function $m_X(t) =0$。

接著我們計算 correlation function
\[{R_X}(t): = E[{X_{{t_1}}}{X_{{t_2}}}] = E[\cos (2\pi f{t_1} + \Theta )\cos (2\pi f{t_2} + \Theta )]
\]由三角函數積化和差
\[\cos A\cos B = \frac{1}{2}\left[ {\cos \left( {A + B} \right) + \cos \left( {A - B} \right)} \right]\]可得
\[\begin{array}{l}
{R_X}(t): = E[{X_{{t_1}}}{X_{{t_2}}}]\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = \frac{1}{2}E\left[ {\cos \left( {2\pi f{t_1} + 2\pi f{t_2} + 2\Theta } \right) + \cos \left( {2\pi f{t_1} - 2\pi f{t_2}} \right)} \right]\\
\begin{array}{*{20}{c}}
{}&{}&{}
\end{array} = \frac{1}{2}\underbrace {E\left[ {\cos \left( {2\pi f\left( {{t_1} + {t_2}} \right) + 2\Theta } \right)} \right]}_{ = 0} + \frac{1}{2}\cos \left( {2\pi f{t_1} - 2\pi f{t_2}} \right)\\
 \Rightarrow {R_X}(t): = \cos \left( {2\pi f{t_1} - 2\pi f{t_2}} \right)
\end{array}\]注意到上式 $E[cos(2 \pi f (t_1 + t_2) + 2 \Theta)]$ 已在 mean function 部分計算過,此為 cosine 函數對 $\theta$ 積分,故為 $0$。$\square$

----------------------------------------
以下討論較抽象,讀者可越過無妨

有了上述基本的隨機過程定義,我們可以開始討論 (某些) 隨機過程的性質。以下要介紹兩個重要的概念,一個稱作 Filtration: (這個字翻譯成中文可能不是很精確,不過可以想成是類似把資訊用漏斗一層一層過濾...) 一個稱作 adapted

首先給出 Filtration 定義如下:

======================
Definition: Filtration
定義一個 indexed set $\mathcal{T} := \{0, 1, 2, ... \} $ or $ = [0, \infty)$。我們說一個 Filtration $\{\mathcal{F}_t : t \in \mathcal{T} \}$ 是一個 family of $\sigma$-algebra (簡單說就是由 $\sigma$-algebra 所組成的集合) 使得下列條件滿足:
\[
s < t \Rightarrow \mathcal{F}_s \subset \mathcal{F}_t
\]======================

Comments:
1. 我們永遠預設有一個固定的機率測度空間 $(\Omega, \mathcal{F}, P)$供我們討論。如上述 Filtration 亦定義在此機率測度空間 $(\Omega, \mathcal{F}, P)$ 之上。亦即我們 Filtration on $(\Omega, \mathcal{F}, P)$。且滿足
\[
s < t \Rightarrow \mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}
\]

2. Filtration 可以被想成是資訊的揭露。甚麼意思呢? 比如說,考慮離散時間的情況,由Filtration 定義我們知道
\[
\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2...
\]亦即表示在時間 $t=1$的時候,我們亦可知道時間 $t=0$ 的情況,亦即 $t=1$ 的時候包含了 $t=0$ 的資訊,但 不包含 $t=2$ (未來)的資訊。

=======================

Example 1: Natural Filtration 
對於一個 連續隨機過程 $\{ X_t \}$ 而言, Natural Filtration $ \mathcal{F}_t^X $ 可以選由此隨機過程產生的 smallest $\sigma$-algebra
\[
 \mathcal{F}_t^X := \sigma(X_s, s \le t)
\]如果是離散隨機過程 $\{X_n \}$,我們可以選
\[
 \mathcal{F}_n^X := \sigma(X_1, X_2, ..., X_n)
\] 作為其  Natural Filtration。

Example 2: Natural Filtration for Random Walk 
現在考慮 $\{X_i \}_{i=1}^{\infty}$ 為 i.i.d. 隨機變數 sequence,現在令 $S_0 =0$ 且其partial sum:
\[
S_n := X_1 + X_2 + ... + X_n
\]則此隨機過程 $S_n$ 對應的 Natural Filtration 為 $\mathcal{F}_n^S := \sigma(X_1, X_2, ..., X_n) = \mathcal{F}_n^X$

=======================

有了 Filtration  (一群 $\sigma$-algebra,或者簡單說就是一群事件。) 的定義,我們便可以介紹一個隨機過程 適應(adapted) 某個 Filtration 的概念,亦即這是一類隨機過程具有 隨著時間的流逝,資訊才漸漸的被 "揭露" 出來的特性: (亦即無法預知未來的隨機過程),而 Filtration 則可以想成是這些 資訊 存放的地方。

======================
Definition: A process adapted to the filtration (or so called: non-anticipating process)
我們說一個隨機過程 $\{ X_t\}$ 是 adapted to the filtration $\{\mathcal{F}_t \}$ 如果下列條件成立:

對任意 $t \in \mathcal{T}$,若 $X_t$ 為 $\mathcal{F}_t$-measurable;亦即 對任意集合 $B \in \mathcal{B}_{\mathbb{R}}$ (Borel Set on $\mathbb{R}$),$X_t^{-1} (B) \in \mathcal{F}_t $
======================

上述的 non-anticipating process 直覺上可以想成 股票的波動 (為一種隨機過程),且今日股價的波動並無法用來預知明日股價的波動如何。 (在投資理論上稱此為效率市場假設,認為所有資訊已經充分反映在今日股價,對明日股價無任何預知作用,數學上我們用 non-anticipating process 來說明這個事情)

事實上 non-anticipating process 在定義 Ito Integral 時候會需要用到,但在此我們不贅述,
對於 Ito Integral 有興趣的讀者可以參閱BLOG 隨機分析的系列文章: [隨機分析] Ito Integral 淺談 (I) - Ito 積分的建構與Ito Isometry property

對於效率市場假設有興趣的讀者可以參閱此篇:[投資理論] 效率市場假設


========================
[延伸閱讀]

[數學] 隨機過程淺淺談(I) - 計數過程 Counting process
[數學] 隨機過程淺淺談(II) - 波松過程 Possion process
[數學] 隨機過程淺淺談(III) - 布朗運動 or 維納過程 (Brownian motion or Wiener Process)


ref:
[1] J. A. Gubner, Probability and Random Processes for Electrical and Computer Engineers.
[2] K. J. Astrom, Stochastic Control Theory