跳到主要內容

[微積分] Little-oh 的性質 與 其對應的 函數可導定義

======================
Definition: $f$ is Little-Oh of $x$
我們說 當 $x \to 0$ 時, $f(x) = o (x)$ 若下列條件成立:
對任意 $\varepsilon>0$ 存在 $\delta > 0$ 使得
\[ |x - 0| < \delta \Rightarrow \frac{f(x)}{|x|} < \varepsilon \]亦即上述等價為 $\displaystyle \lim_{x \to x} \frac{f(x)}{|x|} = 0$
======================

上述定義可進一步推廣如下:

======================
Definition: $f$ is Little-Oh of $g$
我們說 當 $x \to x_0$ 時, $f(x) = o (g(x))$ 若下列條件成立:
對任意 $\varepsilon>0$ 存在 $\delta > 0$ 與 正數 $c>0$ 使得
\[ |x - x_0| < \delta \Rightarrow \frac{f(x)}{g(x)} < \varepsilon \]亦即上述等價為 $\displaystyle \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$
======================

以下我們先看個定理,此定理描述了 $o(x)$ 的一些常用性質:

======================
Theorem:
令 $f, g : I \to \mathbb{R}$ 為兩函數 且 $0 \in I$。若 $f(x) = o(x)$ 且 $g(x) =o(x)$ 則下列三個性質成立
\[\begin{array}{l}
1. \; f\left( x \right) + g\left( x \right) = o\left( x \right)\\
2. \; \alpha f\left( x \right) = o\left( x \right),\begin{array}{*{20}{c}}
{}&{}
\end{array}\forall \alpha  \in \mathbb{R}\\
3. \; f\left( x \right)g\left( x \right) = o\left( x \right)
\end{array}\]======================

Proof: (1)
觀察
\[\mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right) + g\left( x \right)}}{{\left| x \right|}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right)}}{{\left| x \right|}} + \frac{{g\left( x \right)}}{{\left| x \right|}}} \right)
\]由於 $f(x) = o(x)$ 且 $g(x) =o (x)$ 故
\[\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right)}}{{\left| x \right|}}} \right) = 0;\\
\mathop {\lim }\limits_{x \to 0} \left( {\frac{{g\left( x \right)}}{{\left| x \right|}}} \right) = 0
\end{array}\]因此
\[\mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right) + g\left( x \right)}}{{\left| x \right|}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right)}}{{\left| x \right|}} + \frac{{g\left( x \right)}}{{\left| x \right|}}} \right) = 0 + 0 = 0\]亦即
\[
 f(x) + g(x) = o(x)
\]

Proof: (2)
給定任意 $\alpha \in \mathbb{R}$,觀察
\[\mathop {\lim }\limits_{x \to 0} \frac{{\alpha f\left( x \right)}}{{\left| x \right|}} = \alpha \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right)}}{{\left| x \right|}} = 0\]亦即
\[
\alpha f(x) = o(x)
\]
Proof: (3)
觀察
\[\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right)g\left( x \right)}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right)g\left( x \right)}}{{\left| x \right|\left| x \right|}}\left| x \right| = \mathop {\lim }\limits_{x \to 0} \left( {\left( {\frac{{f\left( x \right)}}{{\left| x \right|}}} \right)\left( {\frac{{g\left( x \right)}}{{\left| x \right|}}} \right)\left| x \right|} \right)\]由於 $f(x) = o(x)$ 且 $g(x) =o (x)$ 故
\[\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \left( {\frac{{f\left( x \right)}}{{\left| x \right|}}} \right) = 0;\\
\mathop {\lim }\limits_{x \to 0} \left( {\frac{{g\left( x \right)}}{{\left| x \right|}}} \right) = 0
\end{array}\]且 $\lim_{x \to 0}|x| =0$因此
\[\mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right)g\left( x \right)}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to 0} \left( {\left( {\frac{{f\left( x \right)}}{{\left| x \right|}}} \right)\left( {\frac{{g\left( x \right)}}{{\left| x \right|}}} \right)\left| x \right|} \right) = 0 \cdot 0 \cdot 0 = 0\]

Comment:
上述證明 $(3)$ 亦可採用以下性質來證明:
FACT: 若 $f: I \to \mathbb{R}$ 為函數 且 $0 \in I$,若 $f(x) = o(x)$ 則 $\lim_{x \to 0} f(x) = 0$
讀者可自行嘗試。

以下定理將 little oh 與 函數可微 的定義做連結。

======================
Theorem:
考慮 $f: I \to \mathbb{R}$,則下列敘述等價
\[
1.\;\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h} = f'\left( x \right)\]
\[
2. \;\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right) - f'\left( x \right)h}}{h} = 0
\]
\[
3.  \; \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right) - f'\left( x \right)h}}{{\left| h \right|}} = 0
\]
\[
4.  \; f\left( {x + h} \right) - f\left( x \right) - f'\left( x \right)h = o\left( h \right)
\]
\[
5. \; f\left( {x + h} \right) - f\left( x \right) = f'\left( x \right)h + o\left( h \right)
\]======================


Comment:
上述定理中的 1. 為標準的可導定義,表示 割線極限存在。

現在我們可以引入另一種 函數可導 的定義,此定義在某種意義上扮演承先啟後的角色,因為透過此定義將可允許我們把單變數函數可導的定義推廣到多變數函數之上。現在我們將原本割線極限 的定義改寫成以下定義:


======================
Definition: 令 $f: I \to \mathbb{R}$ 為函數,我們說 $f$ 在點 $x$ 可導若下列條件成立:若存在唯一常數,記作 $f'(x)$,使得
\[
f(x+h) - f(x) = f'(x) h + o(h)
\] 成立
======================


Comments: 
1. 上述導數唯一的結果來自極限值的唯一性質。
2. 讀者也許感到疑惑明明我們對於函數可導的定義已經透過割線極限來定義,為何還要再重新定一個新的定義?因為上述定義將允許我們將原本單變數 $f$ 推廣到 多變數函數。

留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質