跳到主要內容

[微積分] Taylor Expansion and Taylor Series

泰勒展開 (Taylor Expansion) 的目的:試圖將 (足夠平滑) 函數 透過 多項式近似
 NOTE: 在此我們說足夠平滑,意思是指 導數存在。

Comment:
讀者可能學過所謂的 Fourier Series ,其基本概念是試圖將函數透過 "三角函數" 近似。



Taylor Expansion (or Taylor Polynomial)
考慮某函數一階導數存在,則我們可以透過 一階多項式來近似 $f(x)$ 如下:
$$f(x) \approx a + bx$$ 則我們現在可觀察到在 $x =0$ 處, $f(0) = a$ 且其一階導數 $f'(0) = b$ 故事實上可寫
\[
f(x) \approx f(0) + f'(0) x
\]上式稱為 $f(x)$ 的 $1$ 階 Taylor Expansion

再者若此函數二階導數存在,且打算將其表為二階多項式如下: $$f(x) \approx a + bx + c x^2$$ 則同理,我們可觀察在 $x =0$ 處, $f(0) = a$ 且其一階導數 $f'(0) = b$ , 二階導數 $f''(0) = 2c$故事實上可寫
\[\begin{array}{l}
f(x) \approx a + bx + c{x^2}\\
 \Rightarrow f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{2}{x^2}
\end{array}
\]上式稱為 $f(x)$ 的 $2$ 階 Taylor Expansion

接著我們再重複做一次上述近似,再者若此函數 三階導數存在 ,我們可將其表為三階多項式形式如下: $$f(x) \approx a + bx + c x^2 + d x^3
$$同理,觀察在 $x =0$ 處, $f(0) = a$ 且其一階導數 $f'(0) = b$ , 二階導數 $f''(0) = 2c$;三階導數 $f'''(0) = 3 \cdot 2 d$ 故事實上可寫
\[\begin{array}{l}
f(x) \approx a + bx + c{x^2} + d{x^3}\\
 \Rightarrow f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{2}{x^2} + \frac{{f'''\left( 0 \right)}}{{3 \cdot 2}}{x^3}
\end{array}\]上式稱為 $f(x)$ 的 $3$ 階 Taylor Expansion

從上述分析,讀者不難發現若函數 $f(x)$ 的 $n$ 階導數存在,則 $n$ 階 Taylor Expansion 可表為下式
\[f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + \frac{{f'''\left( 0 \right)}}{{3!}}{x^3} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}\]

Example 1: 
考慮 $f(x) := e^x$, 試求 其 $3$ 階 Taylor 展開式。

Solution
$e^x$ 為平滑函數,任意階導數存在 且任意階導數相等,故前面三階導數
$$f(x) = f'(x) = f''(x) = f'''(x) = e^x
$$ 現在帶入 $x=0$ 可得 $f(0) = f'(0) = f''(0) = f'''(0) = 1$ 故其  $3$ 階 Taylor 展開式 為
\[\begin{array}{l}
f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + \frac{{f''\left( 0 \right)}}{{3!}}{x^3}\\
 \Rightarrow {e^x} \approx 1 + 1x + \frac{1}{{2!}}{x^2} + \frac{1}{{3!}}{x^3}
\end{array}\]亦即 我們用 $3$ 階多項式來 "近似" $e^x$。$\square$


Taylor Expansion 的誤差
那麼有了 Taylor 展開 近似 原函數之後,我們必然會想問 此展開 與 原函數差多少? 比如說考慮將 $f(x)$ 做 $n$ 階 Taylor 展開,則我們可寫
\[f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + \frac{{f'''\left( 0 \right)}}{{3!}}{x^3} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}\]現在我們引入  $n$ 階誤差項 稱作 $R_n(x) $, 則
 \[\begin{array}{l}
f(x) \approx f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n}\\
 \Rightarrow f(x) = f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n} + {R_n}\left( x \right)
\end{array}\]那麼誤差項 $R_n(x)$ 該如何估計? 我們可透過以下定理回答此問題

===============
Theorem: Taylor Theorem
考慮 $x \in [a,b]$ 且 $(0 \in [a,b])$,且 對函數 $f(x)$ 的 $n$ 階泰勒展開為
\[f(x) = f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^n} + {R_n}\left( x \right)\] 則存在某點 $c \in [a,b]$ 使得誤差項 \[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{(n+1)}
\]===============
Proof: omitted.

FACT: 由上述定理可知,誤差項有上界
\[
|R_n(x)| \le \frac{M |x|^{n+1}}{(n+1)!}
\]其中 $M:= \max\{|f^{(n+1)}(c)|\}, \forall c\in [a,b]$


Example
利用 $e^x$ 的三階泰勒展開 求 $e^{1/2}$ 的近似值 並估計誤差。

Solution
利用前例可知  $e^x$ 的三階泰勒展開 為
\[{{e^x} \approx 1 + 1x + \frac{1}{{2!}}{x^2} + \frac{1}{{3!}}{x^3}}\]我們可帶入 $x=1/2$ 即可求得所需的泰勒多項式
\[1 + 1\left( {\frac{1}{2}} \right) + \frac{1}{{2!}}{\left( {\frac{1}{2}} \right)^2} + \frac{1}{{3!}}{\left( {\frac{1}{2}} \right)^3}\] 此時泰勒多項式 與 $e^{1/2}$ 之間的 誤差項估計如下
\[\begin{array}{l}
|{R_n}(x)| \le \frac{{M|x{|^{n + 1}}}}{{(n + 1)!}}\\
 \Rightarrow |{R_3}(x)| \le \frac{{M|x{|^4}}}{{(4)!}}
\end{array}\]其中 $M:= \max\{|f^{(n+1)}(c)\}, \forall c\in [a,b]$ ,由於我們關心的是 $e^{1/2}$ 的近似值 與其誤差,故若取 $a=0, b=1/2$ 則 \[M: = \max \{ |{e^c}|\} ,\forall c \in [0,1/2] \Rightarrow M = {e^{1/2}}\] 將此 $M$ 帶回我們的誤差項可得
\[|{R_3}(x)| \le \frac{{{e^{1/2}}|1/2{|^4}}}{{(4)!}}\]注意到 上式需要 計算 $e^{1/2}$ 但我們正需要估計此數值,故需要再度放寬上界
\[|{R_3}(x)| \le \frac{{{e^{1/2}}|1/2{|^4}}}{{(4)!}} \le \frac{{\overbrace {{e^1}}^{ \approx 2.72}|1/2{|^4}}}{{(4)!}} \le \frac{{3 \cdot |1/2{|^4}}}{{(4)!}} \approx 0.008\]

Example
令 $x \in [-1,1]$,試求對 $e^x$ 而言,需要幾階 泰勒多項式 才可使其與原函數 $e^x$ 誤差小於 $0.005 ?$

Solution
回憶誤差項有上界為
\[|{R_n}(x)| \le \frac{M}{{\left( {n + 1} \right)!}}|x{|^{n + 1}}\]其中 $M:= \max\{|e^c|\}, \forall c\in [-1,1]$ 故 $M= e^1$ 亦即,
\[|{R_n}(x)| \le \frac{{{e^1}}}{{\left( {n + 1} \right)!}}|1{|^{n + 1}} = \frac{e}{{\left( {n + 1} \right)!}} \le \frac{3}{{\left( {n + 1} \right)!}}\]現在我們需要 其 小於 $0.005$ 故若取 $n=5$ 則
\[\frac{3}{{\left( {n + 1} \right)!}} \approx 0.004 \le 0.005\]


Taylor Series
那麼如果考慮如果函數  $f(x)$ 的 無窮 階導數存在 (亦即此函數為 平滑(smooth) 函數) 則我們可將在原點展開的 Taylor Expansion 寫成 無窮級數的形式 (若此級數收斂),我們稱之為 Taylor Series :
\[\begin{array}{l}
f(x) = f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{{2!}}{x^2} + ... + \frac{{{f^{\left( n \right)}}\left( 0 \right)}}{{n!}}{x^2} + ...\\
 \Rightarrow f(x) =\sum\limits_{k = 0}^\infty  {\frac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k}}
\end{array}
\] Comment:
若函數為平滑函數 (e.g., $e^x, \sin (x), \cos (x),...$),且 Taylor Series 收斂,則 Taylor Series 收斂到原函數,不再是近似 (在此證明省略)


Example 2:
考慮 $f(x) := e^x$, 試求 其 Taylor Series。

Solution
$e^x$ 為平滑函數,任意階導數存在 且任意階導數相等;我們可將此 $e^x$ 用 Taylor Series 故對若取 $n \in \mathbb{N}$, $f^{(n)}(x) = e^x$,且在 $x=0$ 處 可得 $f^{(n)}(0)= 1$ 故其  Taylor Series 為
\[{f(x) = \sum\limits_{k = 0}^\infty  {\frac{{{f^{\left( k \right)}}\left( 0 \right)}}{{k!}}{x^k} \Rightarrow {e^x} = \sum\limits_{k = 0}^\infty  {\frac{1}{{k!}}{x^k}} } }\] (讀者可自行證明此Taylor Series 收斂,故等號確實成立。 )

Exercise:
(a) 試求 $f(x) = \sin (x)$ 的 Taylor Series。 ANS: $\sin \left( x \right) = \sum\limits_{k = 0}^\infty  {{{\left( { - 1} \right)}^k}\frac{{{x^{2k + 1}}}}{{\left( {2k + 1} \right)!}}} $
(b) 試求 $f(x) = \cos(x)$ 的 Taylor Series。 ANS: $\cos \left( x \right) = \sum\limits_{k = 0}^\infty  {{{\left( { - 1} \right)}^k}\frac{{{x^{2k}}}}{{\left( {2k} \right)!}}} $
(c) 令 $|x| <1$,試求 $f(x) = 1/(1-x)$ 的 Taylor Series。 ANS: $\frac{1}{{1 - x}} = \sum\limits_{k = 0}^\infty  {{x^k}} $

留言

張貼留言

這個網誌中的熱門文章

[數學分析] 什麼是若且唯若 "if and only if"

數學上的 if and only if  ( 此文不討論邏輯學中的 if and only if,只討論數學上的 if and only if。) 中文翻譯叫做  若且唯若 (or 當且僅當) , 記得當初剛接觸這個詞彙的時候,我是完全不明白到底是甚麼意思,查了翻譯也是愛莫能助,畢竟有翻跟沒翻一樣,都是有看沒有懂。 在數學上如果看到 if and only if  這類的句子,其實是表示一種 雙條件句 ,通常可以直接將其視為" 定義(Definition)" 待之,今天要分享的是這樣的一個句子如何用比較直觀的方法去看他 假設我們現在有 兩個邏輯陳述句 A 與  B. 注意到,在此我們不必考慮這兩個陳述句到底是什麼,想表達什麼,或者到底是否為真(true),這些都不重要。只要知道是兩個陳述即可。 現在,考慮新的陳述:  "A if and only if B" 好了,現在主角登場,我們可以怎麼看待這個句子呢? 事實上我們可以很直覺的把這句子拆成兩部分看待,也就是 "( A if B ) and ( A only if B )" 那麼先針對第一個部分  A if B  來看, 其實這句就是說  if B then A, 更直白一點就是 "if B is true, then A is also true".  在數學上等價可以寫為 "B implies A" .  或者更常用一個箭頭符號來表示 "B $\Rightarrow$  A"  現在針對第二個部分  A only if B 此句意指  "If B is not true, then A is also not true". 所以如果已知 A is true,  那麼按照上句不難推得 B is also true 也就是說  A only if B  等價為 "If A is true then B is also true". 同樣,也可以寫作   "A implies B"   或者用箭頭表示  "A   $\Rightarrow$     B".

[數學分析] 淺談各種基本範數 (Norm)

這次要介紹的是數學上一個重要的概念: Norm: 一般翻譯成 範數 (在英語中 norm 有規範的意思,比如我們說normalization就是把某種東西/物品/事件 做 正規化,也就是加上規範使其正常化),不過個人認為其實翻譯成 範數 也是看不懂的...這邊建議把 Norm 想成長度就好 (事實上norm是長度的抽象推廣), 也許讀者會認為好端端的長度不用,為何又要發明一個 norm 來自討苦吃?? 既抽象又艱澀。 事實上想法是這樣的: 比如說現在想要比較兩個數字 $3$ , $5$ 之間的大小,則我們可以馬上知道 $ 3 < 5 $;同樣的,如果再考慮小數與無理數如 $1.8753$ 與 $\pi$,我們仍然可以比較大小 $1.8753 < \pi = 3.1415...$ 故可以發現我們有辦法對 "純量" 做明確的比大小,WHY? 因為前述例子中 $3$, $5$, $1.8753$ or $\pi$ 其各自的大小有辦法被 "measure "! 但是如果是現在考慮的是一組數字 我們如何去measure 其大小呢?? 比如說 \[x:=[1, -2, 0.1, 0 ]^T \]上式的大小該是多少? 是 $1$? $-2$? $0.1$??? 再者如果更過分一點,我們考慮一個矩陣 \[A = \left[ {\begin{array}{*{20}{c}} 1&2\\ 3&4 \end{array}} \right] \],想要知道這個矩陣的大小又該怎麼辦?? 是 $1$ ? $2$ 還是 $4$ ?..其實現階段我們說不清楚。 也正是如此,可以發現我們確實需要新的 "長度" 的定義來幫助我們如何去 measure 矩陣/向量/甚至是函數的大小。 故此,我們首先定義甚麼是Norm,(也就是把 "長度" or "大小" 的本質抽離出來) ================== Definition: Norm 考慮 $V$ 為一個向量空間(Vector space),則我們說  Norm 為一個函數 $||\cdot|| : V \rightarrow \mathbb{R}$ 且滿足下列性質